0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 244 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 32 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 260 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 99 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 207 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 79 ms)
↳32 CpxRNTS
↳33 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳34 CpxRNTS
↳35 IntTrsBoundProof (UPPER BOUND(ID), 135 ms)
↳36 CpxRNTS
↳37 IntTrsBoundProof (UPPER BOUND(ID), 6 ms)
↳38 CpxRNTS
↳39 FinalProof (⇔, 0 ms)
↳40 BOUNDS(1, n^1)
+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
double(X) → +(X, X)
f(0, s(0), X) → f(X, double(X), X)
g(X, Y) → X
g(X, Y) → Y
+(X, 0) → X [1]
+(X, s(Y)) → s(+(X, Y)) [1]
double(X) → +(X, X) [1]
f(0, s(0), X) → f(X, double(X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
+ => plus |
plus(X, 0) → X [1]
plus(X, s(Y)) → s(plus(X, Y)) [1]
double(X) → plus(X, X) [1]
f(0, s(0), X) → f(X, double(X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
plus(X, 0) → X [1]
plus(X, s(Y)) → s(plus(X, Y)) [1]
double(X) → plus(X, X) [1]
f(0, s(0), X) → f(X, double(X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
plus :: 0:s → 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s double :: 0:s → 0:s f :: 0:s → 0:s → 0:s → f g :: g → g → g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
g
double
plus
const, const1
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
const => 0
const1 => 0
double(z) -{ 1 }→ plus(X, X) :|: X >= 0, z = X
f(z, z', z'') -{ 2 }→ f(X, plus(X, X), X) :|: z'' = X, X >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ X :|: z' = Y, Y >= 0, X >= 0, z = X
g(z, z') -{ 1 }→ Y :|: z' = Y, Y >= 0, X >= 0, z = X
plus(z, z') -{ 1 }→ X :|: X >= 0, z = X, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
{ g } { plus } { f } { double } |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: ?, size: O(n1) [z + z'] |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: ?, size: O(n1) [z + z'] |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
f(z, z', z'') -{ 2 }→ f(z'', plus(z'', z''), z'') :|: z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 3 + z'' }→ f(z'', s'', z'') :|: s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 3 + z'' }→ f(z'', s'', z'') :|: s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: ?, size: O(1) [0] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 3 + z'' }→ f(z'', s'', z'') :|: s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: O(n1) [3 + z''], size: O(1) [0] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 6 + 2·z'' }→ s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: O(n1) [3 + z''], size: O(1) [0] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 6 + 2·z'' }→ s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: O(n1) [3 + z''], size: O(1) [0] double: runtime: ?, size: O(n1) [2·z] |
double(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z, z >= 0
f(z, z', z'') -{ 6 + 2·z'' }→ s1 :|: s1 >= 0, s1 <= 0, s'' >= 0, s'' <= 1 * z'' + 1 * z'', z'' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: O(n1) [3 + z''], size: O(1) [0] double: runtime: O(n1) [2 + z], size: O(n1) [2·z] |